
AskingQuestions the Human Way:
ScalableQuestion-Answer Generation from Text Corpus

Bang Liu1, Haojie Wei2, Di Niu1, Haolan Chen2, Yancheng He2
1University of Alberta, Edmonton, AB, Canada

2Platform and Content Group, Tencent, Shenzhen, China

ABSTRACT
The ability to ask questions is important in both human and ma-
chine intelligence. Learning to ask questions helps knowledge acqui-
sition, improves question-answering and machine reading compre-
hension tasks, and helps a chatbot to keep the conversation flowing
with a human. Existing question generation models are ineffective
at generating a large amount of high-quality question-answer pairs
from unstructured text, since given an answer and an input passage,
question generation is inherently a one-to-many mapping. In this
paper, we propose Answer-Clue-Style-aware Question Generation
(ACS-QG), which aims at automatically generating high-quality and
diverse question-answer pairs from unlabeled text corpus at scale
by imitating the way a human asks questions. Our system consists
of: i) an information extractor, which samples from the text multiple
types of assistive information to guide question generation; ii) neu-
ral question generators, which generate diverse and controllable
questions, leveraging the extracted assistive information; and iii)
a neural quality controller, which removes low-quality generated
data based on text entailment. We compare our question generation
models with existing approaches and resort to voluntary human
evaluation to assess the quality of the generated question-answer
pairs. The evaluation results suggest that our system dramatically
outperforms state-of-the-art neural question generation models in
terms of the generation quality, while being scalable in the mean-
time. With models trained on a relatively smaller amount of data,
we can generate 2.8 million quality-assured question-answer pairs
from a million sentences found in Wikipedia.

CCS CONCEPTS
•Computingmethodologies→Natural language processing;
Natural language generation; Machine translation.

KEYWORDS
Question Generation, Sequence-to-Sequence, Machine Reading
Comprehension
ACM Reference Format:
Bang Liu1, HaojieWei2, Di Niu1, Haolan Chen2, Yancheng He2. 2020. Asking
Questions the Human Way: Scalable Question-Answer Generation from
Text Corpus. In Proceedings of The Web Conference 2020 (WWW ’20), April
20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3366423.3380270

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380270

The fight scene finale between Sharon and the character played by Ali Larter,
from the movie Obsessed, won the 2010 MTV Movie Award for Best Fight.

Answer: MTV Movie Award for Best Fight
Clue: from the movie Obsessed
Style: Which
Q: A fight scene from the movie, Obsessed, won which award?

Answer: MTV Movie Award for Best Fight
Clue: The flight scene finale between Sharon and the character played by
Ali Larter
Style: Which
Q: Which award did the fight scene between Sharon and the role of Ali
Larter win?

Answer: Obsessed
Clue: won the 2010 MTV Movie Award for Best Fight
Style: What
Q: What is the name of the movie that won the 2010 MTV Movie Award
for Best Fight?

Figure 1: Given the same input sentence, we can ask diverse
questions based on the different choices about i) what the
target answer is; ii) which answer-related chunk is used as a
clue, and iii) what type of questions is asked.

1 INTRODUCTION
Automatically generating question-answer pairs from unlabeled
text passages is of great value to many applications, such as as-
sisting the training of machine reading comprehension systems
[10, 44, 45], generating queries/questions from documents to im-
prove search engines [17], training chatbots to get and keep a
conversation going [40], generating exercises for educational pur-
poses [7, 18, 19], and generating FAQs for web documents [25].
Many question-answering tasks such as machine reading compre-
hension and chatbots require a large amount of labeled samples
for supervised training, acquiring which is time-consuming and
costly. Automatic question-answer generation makes it possible to
provide these systems with scalable training data and to transfer
a pre-trained model to new domains that lack manually labeled
training samples.

Despite a large number of studies onNeural QuestionGeneration,
it remains a significant challenge to generate high-quality QA pairs
from unstructured text at large quantities. Most existing neural
question generation approaches try to solve the answer-aware
question generation problem, where an answer chunk and the
surrounding passage are provided as an input to the model while
the output is the question to be generated. They formulate the
task as a Sequence-to-Sequence (Seq2Seq) problem, and design
various encoder, decoder, and input features to improve the quality
of generated questions [10, 11, 22, 27, 39, 41, 53]. However, answer-
aware question generation models are far from sufficient, since
question generation from a passage is inherently a one-to-many

2032

https://doi.org/10.1145/3366423.3380270
https://doi.org/10.1145/3366423.3380270
https://doi.org/10.1145/3366423.3380270

WWW ’20, April 20–24, 2020, Taipei, Taiwan Bang Liu1 , Haojie Wei2 , Di Niu1 , Haolan Chen2 , Yancheng He2

mapping. Figure 1 shows an example of this phenomenon. Given
the same input text “The fight scene finale between Sharon and
the character played by Ali Larter, from the movie Obsessed, won
the 2010 MTV Movie Award for Best Fight.”, we can ask a variety
of questions based on it. If we select the text chunk “MTV Movie
Award for Best Fight” as the answer, we can still ask different
questions such as “A fight scene from the movie, Obsessed, won
which award?” or “Which award did the fight scene between Sharon
and the role of Ali Larter win?”.

We argue that when a human asks a question based on a pas-
sage, she will consider various factors. First, she will still select
an answer as a target that her question points to. Second, she will
decide which piece of information will be present (or rephrased)
in her question to set constraints or context for the question. We
call this piece of information as the clue. The target answer may
be related to different clues in the passage. Third, even the same
question may be expressed in different styles (e.g., “what”, “who”,
“why”, etc.). For example, one can ask “which award” or “what is
the name of the award” to express the same meaning. Once the an-
swer, clue, and question style are selected, the question generation
process will be narrowed down and become closer to a one-to-one
mapping problem, essentially mimicking the human way of asking
questions. In other words, introducing these pieces of information
into question-answer generation can help reduce the difficulty of
the task.

In this paper, we propose Answer-Clue-Style-aware Question
Generation (ACS-QG) designed for scalable generation of high-
quality question-answer pairs from unlabeled text corpus. Just as a
human will ask a question with clue and style in mind, our system
first automatically extracts multiple types of information from an
input passage to assist question generation. Based on the multi-
aspect information extracted, we design neural network models to
generate diverse questions in a controllable way. Compared with
existing answer-aware question generation, our approach essen-
tially converts the one-to-many mapping problem into a one-to-one
mapping problem, and is thus scalable by varying the assistive infor-
mation fed to the neural network while in the meantime ensuring
generation quality. Specifically, we have solved multiple challenges
in the ACS-aware question generation system:

What to ask given an unlabeled passage? Given an input pas-
sage such as a sentence, randomly sampling <answer, clue, style>
combinations will cause type mismatches, since answer, clue, and
style are not independent of each other. Without taking their corre-
lations into account, for example, we may select “how” or “when”
as the target question style while a person’s name is selected as the
answer. Moreover, randomly sampling <answer, clue, style> com-
binations may lead to input volume explosion, as most of such
combinations point to meaningless questions.

To overcome these challenges, we design and implement an
information extractor to efficiently sample meaningful inputs from
the given text. We learn the joint distribution of <answer, clue,
style> tuples from existing reading comprehension datasets, such as
SQuAD [36]. In the meantime, we decompose the joint probability
distribution of the tuple into three components, and apply a three-
step sampling mechanism to select reasonable combinations of
input information from the input passage to feed into the ACS-
aware question generator. Based on this strategy, we can alleviate

type mismatches and avoid meaningless combinations of assistive
information.

How to learn a model to ask ACS-aware questions? Most
existing neural approaches are designed for answer-aware question
generation, while there is no training data available for the ACS-
aware question generation task. We propose effective strategies
to automatically construct training samples from existing reading
comprehension datasets without any human labeling effort. We
define “clue” as a semantic chunk in an input passage that will
be included (or rephrased) in the target question. Based on this
definition, we perform syntactic parsing and chunking on input text,
and select the chunk which is most relevant to the target question as
the clue. Furthermore, we categorize different questions into 9 styles,
including “what”, “how”, “yes-no” and so forth, In this manner, we
have leveraged the abundance of reading comprehension datasets
to automatically construct training data for ACS-aware question
generation models.

We propose two deep neural network models for ACS-aware
question generation, and show their superior performance in gener-
ating diverse and high-quality questions. The first model employs
sequence-to-sequence framework with copy and attention mecha-
nism [1, 3, 43], incorporating the information of answer, clue and
style into the encoder and decoder. Furthermore, it discriminates
between content words and function words in the input, and uti-
lizes vocabulary reduction (which downsizes the vocabularies for
both the encoder and decoder) to encourage aggressive copying.
In the second model, we fine-tune a GPT2-small model [34]. We
train our ACS-aware QG models using the input passage, answer,
clue, and question style as the language modeling context. As a re-
sult, we reduce the phenomenon of repeating output words, which
usually exists with sequence-to-sequence models, and can gener-
ate questions with better readability. With multi-aspect assistive
information, our models are able to ask a variety of high-quality
questions based on an input passage, while making the generation
process controllable.

How to ensure the quality of generated QA pairs? We con-
struct a data filter, which consists of an entailment model and a
question answering model. In our filtering process, we input ques-
tions generated in the aforementioned manner into a BERT-based
[9] question answering model to get its predicted answer span,
and measure the overlap between the input answer span and the
predicted answer span. In addition, we also classify the entailment
relationship between the original sentence and the question-answer
concatenation. These components allow us to remove low-quality
QA pairs. By combining the input sampler, ACS-aware question
generator, and the data filter, we have constructed a pipeline that
is able to generate a large number of QA pairs from unlabeled text
without extra human labeling efforts.

We perform extensive experiments based on the SQuAD dataset
[36] and Wikipedia, and compare our ACS-aware question genera-
tion model with different existing approaches. Results show that
both the content-separated seq2seq model with aggressive copy-
ing mechanism and the extra input information bring substantial
benefits to question generation. Our method outperforms the state-
of-the-art models significantly in terms of various metrics such as
BLEU-4, ROUGE-L and METEOR.

2033

AskingQuestions the Human Way:
Scalable Question-Answer Generation from Text Corpus WWW ’20, April 20–24, 2020, Taipei, Taiwan

QA Datasets
<p, q, a>

Text Corpus
<p>

ACS-Aware QG
Datasets

<p, q, a, c, s>

Inputs for
ACS-Aware QG

<p, a, c, s>

ACS-Aware QG
Models Filter

Generated
<p, q, a>

Tuples

Obtaining
datasets Seq2Seq

GPT2Sampling
inputs

Train

Input

OutputInput

Figure 2: An overview of the system architecture. It contains a dataset constructor, information sampler, ACS-aware question
generator and a data filter.

With models trained on 86, 635 of SQuAD data samples, we can
automatically generate two large datasets containing 1.33 million
and 1.45 million QA pairs from a corpus of top-ranked Wikipedia
articles, respectively. We perform quality evaluation on the gener-
ated datasets and identify their strengths and weaknesses. Finally,
we also evaluate how our generated QA data perform in training
question-answering models in machine reading comprehension, as
an alternative means to assess the data generation quality.

2 PROBLEM FORMULATION
In this section, we formally introduce the problem of ACS-aware
question generation.

Denote a passage by p, where it can be either a sentence or a
paragraph (in our work, it is a sentence). Let q denotes a question
related to this passage, and a denotes the answer of that question.
A passage consists of a sequence of words p = {pt }

|p |
t=1 where |p |

denotes the length of p. A question q = {qt }
|q |
t=1 contains words

from either a predefined vocabulary V or from the input text p.
Our objective is to generate different question-answer pairs from
it. Therefore, we aim to model the probability P(q,a |p).

In our work, we factorize the generation process into multiple
steps to select different inputs for question generation. Specifically,
given a passage p, we will select three types of information as input
to a generative model, which are defined as follows:

• Answer: here we define an answer a as a span in the input
passage p. Specifically, we select a semantic chunk of p as
a target answer from a set of chunks given by parsing and
chunking.
• Clue: denote a clue as c . As mentioned in Sec. 1, a clue is a
semantic chunk in input p which will be copied or rephrased
in the target question. It is related to the answer a, and pro-
viding it as input can help reducing the uncertainty when
generating questions. This helps to alleviate the one-to-many
mapping problem of question generation, makes the gen-
eration process more controllable, as well as improves the
quality of generated questions.
• Style: denote a question style as s . We classify each ques-
tion into nine styles: “who”, “where”, “when”, “why”, “which”,
“what”, “how”, “yes-no”, and “other”. By providing the target
style to the question generation model, we further reduce the
uncertainty of generation and increase the controllability.

We shall note that our definition of clue is different with [27]. In
our work, given a passage p and a question q, we identify a clue as
a consistent chunk in p instead of being the overlapping non-stop
words between p and q. On one hand, this allows the clue to be

expressed in different ways in a question. On the other hand, given
unlabeled text corpus, we can sample clue chunks for generating
questions according to the same distribution in training datasets to
avoid discrepancy between training and generating.

Given the above definitions, our generation process is decom-
posed into input sampling and ACS-aware question generation:

P(q,a |p) =
∑
c,s

P(a, c, s |p)P(q |a, c, s,p) (1)

=
∑
c,s

P(a |p)P(s |a,p)P(c |s,a,p)P(q |c, s,a,p), (2)

where P(a |p), P(s |a,p), and P(c |s,a,p) model the process of input
sampling to get answer, question style, and clue information for a
target question; and P(q |c, s,a,p) models the process of generating
the target question.

3 MODEL DESCRIPTION
In this section, we present our overall system architecture for gen-
erating questions from unlabeled text corpus. We then introduce
the details of each component.

Figure 2 shows the pipelined systemwe build to train ACS-aware
question generation models and generate large-scale datasets which
can be utilized for different applications. Our system consists of four
major components: i) dataset constructor, which takes existing QA
datasets as input, and constructs training datasets for ACS-aware
question generation; ii) information sampler (extractor), which
samples answer, clue and style information from input text and
feed them into ACS-aware QG models; iii) ACS-aware question
generation models, which are trained on the constructed datasets
to generate questions; and iv) data filter, which controls the quality
of generated questions.

3.1 Obtaining Training Data for Question
Generation

Our first step is to acquire a training dataset to train ACS-aware
question generation models. Existing answer-aware question gen-
eration methods [11, 27, 39, 53] utilize reading comprehension
datasets such as SQuAD [36], as these datasets contain < p,q,a >
tuples. However, for our problem, the input and output consists
of < p,q,a, c, s >, where the clue c and style s information are
not directly provided in existing datasets. To address this issue, we
design effective strategies to automatically extract clue and style
information without involving human labeling.

Rules for Clue Identification. As mentioned in Sec. 2, given
< p,q,a >, we define a semantic chunk c in input p which is copied

2034

WWW ’20, April 20–24, 2020, Taipei, Taiwan Bang Liu1 , Haojie Wei2 , Di Niu1 , Haolan Chen2 , Yancheng He2

ALGORITHM 1: Clue Extraction
Input: passage p , answer a, question q, related words dictionary R .
Output: clue c .
1: get candidate chunks C = {c1, c2, · · · , c |C | } of passage p by parsing

and chunking;
2: remove function words, tokenize p and q to get pt,c and qt,c and

stemming p and q to get pm,c and qm,c ;
3: for c ∈ C do
4: get tokenized clue ct,c and stemmed clue cm,c with only content

words;
5: not,c ← number of overlapping tokens between ct,c and qt,c ;
6: nom,c ← number of overlapping stems between cm,c and qm,c ;
7: nsof t−ot,c ← number of soft copied tokens between ct,c and qt,c ;
8: binary x ← whether q contains the chunk text c ;
9: score(c) = not,c + n

o
m,c + n

sof t−o
t,c + x

10: end for
11: select the chunk c with maximum score(c) as the clue chunk;

or rephrased in the output question q as clue. We identify c by the
method shown in Algorithm 1.

First, we parse and chunk the input passage to get all candidate
chunks. Second, we get the tokenized and stemmed passage and
question, and only keep the content words in the results. Third, we
calculate the similarities between each candidate chunk and the
target question according to different criteria. The final score of
each chunk is the sum of different similarities. Finally, we select
the chunk with the maximum score as the identified clue chunk c .

To estimate the similarities between each candidate chunk and
the question, we calculate the number of overlapping tokens and
stems between each chunk and the question, as well as checking
whether the chunk is fully contained in the question. In addition,
we further define “soft copy” relationship between two words to
take rephrasing into consideration. Specifically, a word wq ∈ q
is considered as soft-copied from input passage p if there exist a
wordwp ∈ p which is semantically coherent withwq . To give an
instance, consider a passage “Selina left her hometown at the age of
18” and a question “How old was Selina when she left?”, the word
“old” is soft-copied from “age” in the input passage.

To identify the soft-copy relationship between any pair of words,
we utilize synonyms and word vectors, such as Glove [33], to con-
struct a relatedwords dictionaryR, whereR(w) = {w1,w2, · · · ,w |R(w) |}
returns a set of words that is closely related tow . For each wordw ,
R(w) is composed of the synonyms ofw , as well as the top N most
similar words estimated by word vector representations (we set
N = 5). In our work, we utilize Glove word vectors, and construct
R based on Genism [37] and WordNet [30].

Rules for StyleClassification. Algorithm 2 presents ourmethod
for question style classification. We classify a given question into 9
classes based on a few heuristic strategies. If q contains who, where,
when, why, which, what, or how, we classify it as the corresponding
type. For yes-no type questions, we define a set of feature words. If
q starts with any word belonging to the set of feature words, we
classify it as type yes-no. For all other cases, we label it as other.

ALGORITHM 2: Style Classification
Input: question q, style set S =

{who, where, when, why, which, what, how, yes-no, other },
yes-no feature words set Y =
{am, is, was, were, are, does, do, did, have, had, has, could,
can, shall, should, will, would,may,miдht }.

Output: style s ∈ S .
1: for s ∈ S\{yes-no, other } do
2: if word s is contained in q then
3: return s
4: end if
5: end for
6: for y ∈ Y do
7: if word y is the first word of q then
8: return yes-no
9: end if
10: end for
11: return other

3.2 ACS-Aware Question Generation
After obtained training datasets, we design two models for ACS-
aware question generation. The first model is based on Seq2Seq
framework with attention and copy mechanism [1, 14, 43]. In addi-
tion, we exploit clue embedding, content embedding, style encoding
and aggressive copying to improve the performance of question
generation. The secondmodel is based on pre-trained languagemod-
els. We fine-tune a GPT2-small model [34] using the constructed
training datasets.

3.2.1 Seq2Seq-based ACS-aware question generation. Given a pas-
sage, an answer span, a clue span, and a desired question style,
we train a neural encoder-decoder model to generate appropriate
questions.

Encoder. We utilize a bidirectional Gated Recurrent Unit (Bi-
GRU) [5] as our encoder. For each word pi in input passage p, we
concatenate the different features to form a concatenated embed-
ding vector wi as the input to the encoder. Specifically, for each
word, it is represented by the concatenation of its word vector, em-
beddings of its Named Entity Recognition (NER) tag, Part-of-Speech
(POS) tag, and whether it is a content word. In addition, we can
know whether each word is within the span of answer a or clue c ,
and utilize binary features to indicate the positions of answer and
clue in input passage. All tag features and binary features are casted
into 16-dimensional vectors by different embedding matrices that
are trainable.

Suppose the embedding of passage p is (w1,w2, · · · ,w |p |). Our
encoder will read the input sequence and produce a sequence of
hidden states h1,h2, · · · ,h |p | , where each hidden state is a concate-
nation of a forward representation and a backward representation:

hi = [
−→
h i ;
←−
h i], (3)

−→
h i = BiGRU(wi ,

−→
h i−1), (4)

←−
h i = BiGRU(wi ,

←−
h i+1). (5)

The
−→
h i and

←−
h i are the forward and backward hidden states of the

i-th token in p, respectively.

2035

AskingQuestions the Human Way:
Scalable Question-Answer Generation from Text Corpus WWW ’20, April 20–24, 2020, Taipei, Taiwan

Decoder. Our decoder is another GRU with attention and copy
mechanism. Denote the embedding vector of desired question style
s as hs . We initialize the hidden state of our decoder GRU by con-
catenating hs with the last backward encoder hidden state

←−
h 1 to a

linear layer:

sl = tanh(W0
←−
h 1 + b), (6)

s0 = [hs ; sl]. (7)
At each decoding time step t , the decoder calculates its current

hidden state based on the word vector of the previous predicted
wordwt−1, previous attentional context vector ct−1, and its previ-
ous hidden state st−1:

st = GRU([wt−1; ct−1], st−1), (8)
where the context vector ct at time step t is a weighted sum of input
hidden states, and the weights are calculated by the concatenated
attention mechanism [28]:

et,i = v
⊺tanh(Wsst +Whhi), (9)

αt,i =
exp(et,i)∑ |p |
j=1 exp(et, j)

, (10)

ct =

|p |∑
i=1

αt,ihi . (11)

To generate an output word, we combine wt−1, st and ct to
calculate a readout state rt by an MLP maxout layer with dropouts
[13], and pass it to a linear layer and a softmax layer to predict the
probabilities of the next word over a vocabulary:

rt =Wrwwt−1 +Wrcct +Wr sst (12)
mt = [max{rt,2j−1, rt,2j }]⊺j=1, ...,d (13)

p(yt |y1, · · · ,yt−1) = softmax(Womt), (14)
where rt is a 2-D vector.

For copy or point mechanism [15], the probability to copy a word
from input p at time step t is given by:

дc = σ (Wcsst +Wccct + b), (15)
where σ is the Sigmoid function, and дc is the probability of per-
forming copying. The copy probability of each input word is given
by the attention weights in Equation (10).

It has been reported that the generated words in a target ques-
tion are usually from frequent words, while the majority of low-
frequency words in the long tail are copied from the input instead of
generated [27]. Therefore, we reduce the vocabulary size to be the
top NV high-frequency words at both the encoder and the decoder,
where NV is a predefined threshold that varies among different
datasets. This helps to encourage the model to learn aggressive
copying and improves the performance of question generation.

3.2.2 GPT2-based ACS-aware question generation. Pre-trained large-
scale language models, such as BERT [9], GPT2 [34] and XLNet
[49], have significantly boosted the performance of a series of NLP
tasks including text generation. They are mostly based on the Trans-
former architecture [46] and have been shown to capture many
facets of language relevant for downstream tasks [6]. Compared
with Seq2Seq models which often generate text containing repeated

<bos> Passage Clue Answer Style Question<clue> <ans> <style> <ques> <eos>

GPT-2 Language Model

Segment Embeddings

Positional Embeddings

Word Embeddings

Figure 3: The input representations we utilized for fine-
tuning GPT-2 Transformer-based language model.

words, the pre-trained language models acquire knowledge from
large-scale training dataset and are able to generate text of high-
quality. In our work, to produce questions with better quality and
to compare with Seq2Seq-based models, we further fine-tune the
publicly-available pre-trained GPT2-small model [34] according to
our problem settings.

Specifically, to obtain an ACS-question generation model with
GPT2, we concatenate passage, answer, clue and question style as
the context of language modeling. Specifically, the input sequence
is organized in the form of “<bos> ..passage text.. <clue> .. clue chunk
.. <ans> .. answer chunk .. <style> .. question style .. <ques> .. ques-
tion text .. <eos>”. During the training process, we learn a language
model with above input format. When generating, we sample dif-
ferent output questions by starting with an input in the form of
“<bos> ..passage text.. <clue> .. clue chunk .. <ans> .. answer chunk ..
<style> .. question style .. <ques>”. Figure 3 illustrates the input rep-
resentation for fine-tuning GPT-2 language model. Similar to [25],
we leverage GPT-2’s segment embeddings to denote the specificity
of the passage, clue, answer, style and question. We also utilize
answer segment embeddings and clue segment embedding in place
of passage segment embeddings at the location of the answer or
clue in the passage to denote the position of the answer span and
clue span. During the generation process, the trained model uses
top-p nucleus sampling with p = 0.9 [20] instead of beam search
and top-k sampling. For implementation, we utilize the code base
of [25] as a starting point, as well as the Transformers library from
HuggingFace [48].

3.3 Sampling Inputs for Question Generation
As mentioned in Sec. 2, the process of ACS-aware question gen-
eration consists of input sampling and text generation. Given an
unlabeled text corpus, we need to extract valid <passage, answer,
clue, style> combinations as inputs to generate questions with an
ACS-aware question generation model.

In our work, we decompose the sampling process into three
steps to sequentially sample the candidate answer, style and clue
based on a given passage. We make the following assumptions: i)
the probability of a chunk a be selected as an answer only depends
on its Part-of-Speech (POS) tag, Named Entity Recognition (NER)
tag and the length (number of words) of the chunk; ii) the style s of
the target question only depends on the POS tag and NER tag of
the selected answer a; and iii) the probability of selecting a chunk
c as clue depends on the POS tag and the NER tag of c , as well as
the dependency distance between chunk c and a. We calculate the

2036

WWW ’20, April 20–24, 2020, Taipei, Taiwan Bang Liu1 , Haojie Wei2 , Di Niu1 , Haolan Chen2 , Yancheng He2

length of the shortest path between the first word of c and that of
a as the dependency distance. The intuition for the last designation
is that a clue chunk is usually closely related to the answer, and
is often copied or rephrased into the target question. Therefore,
the dependency distance between a clue and an answer will not be
large [27].

With above assumptions, we will have:

P(a |p) = P(a |POS(a),NER(a), lenдth(a)), (16)
P(s |a,p) = P(s |POS(a),NER(a)), (17)

P(c |s,a,p) = P(c |POS(c),NER(c),DepDist(c,a)), (18)

where DepDist(c,a) represents the dependency distance between
the first token of c and that of a.

The above conditional probabilistic distributions can be learned
from an existing dataset (such as SQuAD), named as reference
dataset. Given a reference dataset consisting of <passage, question,
answer> triplets, first, we perform POS tagging, NER tagging, pars-
ing and chunking on the input passages. Second, we recognize
the clue and style information according to the steps described in
Sec. 3.1, get the NER tag and the POS tag of both the answer chunk
and the clue chunk, and calculate the dependency distance between
the clue chunk and the answer chunk. Finally, we calculate the
conditional distributions according to the extracted information.

We set the maximum length of an candidate answer to 30, and
split the range of length into 10 bins of equal size to calculate
P(a |POS(a),NER(a), lenдth(a)). Similarly, we set the maximum de-
pendency distance between a clue chunk and an answer chunk
to be 20, and split the range of distance into 10 bins of equal size
to calculate P(c |POS(c),NER(c),DepDist(c,a)). Figure 4 shows the
marginal distributions we get by utilizing the SQuAD1.1 training
dataset as our reference data. The NER tagging 1 is performed by
spaCy [21], and the “UNK” tag means the chunk is not recognized
as a named entity. From Figure 4(a), we can see that most of the an-
swers are short, and a majority of them are entities such as person
(PERSON), organization (ORG) or date (DATE). From Figure 4(b),
we can see the syntactical dependency distance between a clue
chunk and an answer is usually less than 8, which matches with
our intuition that a clue shall be correlated with the answer so
that it will be copied or rephrased in the target question. Finally,
Figure 4(c) shows most of the questions are “What” style, and the
followings are “Who”, “How” and “When”. The NER tags of answers
are highly correlated with the style of questions. Also, we shall no-
tice that the NER performance of spaCy is not perfect. Therefore,
we may observe weird cases such as organization (ORG) matches
with “Who”. Determining different conditional probabilities with a
reference dataset instead of following pre-defined rules helps us to
take such kind of noises into account.

After calculating the above distributions according to an refer-
ence dataset, we can sample different information given a passage
p. First, we get all candidate chunks K = {k1,k2, · · · ,k |K |} by
parsing and chunking over p. Second, we sample a chunk ki as
answer according to the normalized probability distribution over

1The meaning of NER labels can be found at: https://spacy.io/api/annotation

(a) Joint Distribution of Answer NER and Answer Length

(b) Joint Distribution of Clue NER and Dependency Distance

(c) Joint Distribution of Answer NER and Question Style

Figure 4: The input join distributionswe get using SQuAD1.1
training dataset as reference data.

all chunks:

P(ki) =
P(ki |POS(ki),NER(ki), lenдth(ki))∑ |K |
j=1 P(kj |POS(kj),NER(kj), lenдth(kj))

. (19)

2037

AskingQuestions the Human Way:
Scalable Question-Answer Generation from Text Corpus WWW ’20, April 20–24, 2020, Taipei, Taiwan

Third, we sample a question style si over all possible questions
styles S = {s1, s2, · · · , s |S |} by the normalized probability:

P(si) =
P(si |POS(ki),NER(ki))∑ |S |
j=1 P(sj |POS(ki),NER(ki))

. (20)

Finally, we sample a chunk kl as clue according to:

P(kl) =
P(kl |POS(kl),NER(kl),DepDist(kl ,ki))∑ |K |
j=1 P(kj |POS(kj),NER(kj),DepDist(kj ,ki))

. (21)

We can repeat the above steps for multiple times to get different
inputs from the same passage and generate diverse questions. In
our work, for each input passage, we sample 5 different chunks
as answer spans, 2 different question styles for each answer, and
2 different clues for each answer. In this way, we over-generate
questions by sampling 20 questions for each sentence.

3.4 Data Filtering for Quality Control
After sampled multiple inputs from each sentence, we can generate
different questions based on the inputs. However, it is hard to ask
each sentence 20 meaningful and different questions even given 20
different inputs derived from it, as the questions may be duplicated
due to similar inputs, or the questions can be meaningless if the
<answer, clue, style> combination is not reasonable. Therefore, we
further utilize a filter to remove low-quality QA pairs.

We leverage an entailment model and a QA model based on
BERT [9]. For the entailment model, as the SQuAD 2.0 dataset [35]
contains unanswerable questions, we utilize it to train a classifier
which tells us whether a pair of <question, answer> matches with
the content in the input passage. For the question answering model,
we fine-tuned another BERT-based QA model utilizing the SQuAD
1.1 dataset [36].

Given a sample <passage, question, answer>, we keep it if this
sample satisfies two criteria: first, it is classified as positive accord-
ing to the BERT-based entailment model; second, the F1 similarity
score between the gold answer span and the answer span predicted
by BERT-based QA is above 0.9. Note that we do not choose to
fine-tune a BERT-based QA model over SQuAD 2.0 to perform en-
tailment and question answering at the same time. That is because
we get better performance by separating the entailment step with
the QA filtering step. Besides, we can utilize extra datasets from
other entailment tasks to enhance the entailment model and further
improve the data filter.

4 EVALUATION
In this section, we compare our proposed ACS-aware question
generation with answer-aware question generation models to show
its benefits. We generate a large number of QA pairs from unlabeled
text corpus using our models, and further perform a variety of
evaluations to analyze the quality of the generated data. Finally,
we test the performance of QA models trained on our generated
dataset, and show the potential applications and future directions
of this work.

4.1 Evaluating ACS-aware Question Generation
Datasets, Metrics and Baselines. We evaluate the performance
of ACS-aware question generation based on the SQuAD dataset [36].

It is a reading comprehension dataset which contains questions
derived from Wikipedia articles, and the answer to every question
is a segment of text from the corresponding reading passage. In our
work, we use the data split proposed by [53], where the input is the
sentence that contains the answer. The training set contains 86, 635
samples, and the original dev set that contains 17, 929 samples is
randomly split into a dev test and a test set of equal size. The average
lengths (number of words) of sentences, questions and answers are
32.72, 11.31, and 3.19, respectively.

The performance of question generation is evaluated by the
following metrics.
• BLEU [31]. BLEU measures precision by how much the
words in predictions appear in reference sentences. BLEU-1
(B1), BLEU-2 (B2), BLEU-3 (B3), and BLEU-4 (B4), use 1-gram
to 4-gram for calculation, respectively.
• ROUGE-L [26]. ROUGE-L measures recall by how much
the words in reference sentences appear in predictions using
Longest Common Subsequence (LCS) based statistics.
• METEOR [8]. METEOR is based on the harmonic mean of
unigram precision and recall, with recall weighted higher
than precision.

We compare our methods with the following baselines.
• PCFG-Trans [18]: a rule-based answer-aware question gen-
eration system.
• SeqCopyNet [54],NQG++ [53],AFPA [42], seq2seq+z+c+GAN
[50], and s2sa-at-mp-gsa [52]: answer-aware neural ques-
tion generation models based on Seq2Seq framework.
• NQG-Knowledge [16], DLPH [12]: auxiliary-information-
enhanced question generation models with extra inputs such
as knowledge or difficulty.
• Self-training-EE [38],BERT-QG-QAP [51],NQG-LM [55],
CGC-QG [27] andQType-Predict [56]: multi-task question
generation models with auxiliary tasks such as question an-
swering, language modeling, question type prediction and
so on.

The reported performance of baselines are directly copied from
their papers or evaluated by their published code on GitHub.

For our models, we evaluate the following versions:
• CS2S-VR-A. Content separated Seq2Seq model with Vocab-
ulary Reduction for Answer-aware question generation. In
this variant, we incorporate content embeddings in word
representations to indicate whether each word is a content
word or a function word. Besides, we reduce the size of vo-
cabulary by only keeping the top 2000 frequent words for
encoder and decoder. In this way, low-frequency words are
represented by its NER, POS embeddings and feature embed-
dings. We also add answer position embedding to indicate
the answer span in input passages.
• CS2S-AS. This model adds question style embedding to ini-
tialize decoder, without vocabulary reduction (vocabulary
size is 20, 000 when we do not exploit vocabulary reduction).
• CS2S-AC. The variant adds clue embedding in encoder to
indicate the span of clue chunk.
• CS2S-ACS. This variant adds both clue embedding in en-
coder and style embedding in decoder.

2038

WWW ’20, April 20–24, 2020, Taipei, Taiwan Bang Liu1 , Haojie Wei2 , Di Niu1 , Haolan Chen2 , Yancheng He2

Model B1 B2 B3 B4 ROUGE-L METEOR

PCFG-Trans 28.77 17.81 12.64 9.47 31.68 18.97
SeqCopyNet − − − 13.02 44.00 −

seq2seq+z+c+GAN 44.42 26.03 17.60 13.36 40.42 17.70
NQG++ 42.36 26.33 18.46 13.51 41.60 18.18
AFPA 43.02 28.14 20.51 15.64 − −

s2sa-at-mp-gsa 44.51 29.07 21.06 15.82 44.24 19.67
NQG-Knowledge − − − 13.69 42.13 18.50

DLPH 44.11 29.64 21.89 16.68 46.22 20.94
NQG-LM 42.80 28.43 21.08 16.23 − −

QType-Predict 43.11 29.13 21.39 16.31 − −

Self-training-EE − − − 14.28 42.97 18.79
CGC-QG 46.58 30.90 22.82 17.55 44.53 21.24

BERT-QG-QAP − − − 18.65 46.76 22.91

CS2S-VR-A 45.28 29.58 21.45 16.13 43.98 20.59
CS2S-AS 45.79 29.12 20.59 15.09 45.84 20.14
CS2S-AC 48.13 32.51 24.08 18.40 47.45 22.27
CS2S-ACS 50.72 34.60 25.79 19.84 51.08 23.58

CS2S-VR-ACS 52.30 36.70 28.00 22.05 53.25 25.11
GPT2-ACS 42.60 31.23 24.00 18.87 43.63 25.15

Table 1: Evaluation results of different models on SQuAD
dataset.

Experiments CS2S-VR-ACS GPT2-ACS GOLD

Question is
Well-formed

No 28.5% 6.0% 2.0%
Understandable 31.5% 19.5% 9.0%

Yes 40.0% 74.5% 89.0%
Question is
Relevant

No 6.3% 11.7% 7.1%
Yes 93.7% 88.3% 92.9%

Answer is
Correct

No 7.4% 3.6% 2.2%
Partially 12.7% 15.1% 15.4%

Yes 79.9% 81.3% 82.4%

Table 2: Human evaluation results about the quality of gen-
erated QA pairs.

• CS2S-VR-ACS. This is the fully featured model with answer,
clue and style embedding, as well as vocabulary reduction.
• GPT2-ACS. This is our fine-tuned GPT2-small model for
ACS-aware question generation.

Experiment Settings. We implement our models in PyTorch
1.1.0 [32] and Transformers 2.0.0 [48], and train the model with two
Tesla P40. We utilize spaCy [29] to perform dependency parsing
and extract lexical features for tokens. For Seq2Seq-based models,
we set word embeddings to be 300-dimensional and initialize them
by GloVe, and set them trainable. The out-of-vocabulary words
are initialized randomly. All other features are embedded to 16-
dimensional vectors. The encoder is a single layer BiGRU with
hidden size 512, and the decoder is a single layer undirected GRU
with hidden size 512. We set dropout rate p = 0.1 for the encoder,
decoder, and the attention module. We train the models by Cross-
Entropy loss for question generation and question copying, and
perform gradient descent by the Adam [24] optimizer with an initial
learning rate lr = 0.001, two momentum parameters are β1 = 0.8
and β2 = 0.999 respectively, and ϵ = 10−8. The mini-batch size for
each update is set to 32 and model is trained for up to 10 epochs.
Gradient clipping with range [−5, 5] is applied to Adam. Beam
width is set to be 20 for decoding. The decoding process stops when
the <EOS> token (represents end-of-sentence) is generated.

For GPT2-ACS model, we fine-tune the GPT2-small model using
SQuAD 1.1 training dataset from [53]. We fine-tune the model for
4 epochs with batch size 2, and apply top-p nucleus sampling with
p = 0.9 when decoding. For BERT-based filter, we fine-tune the
BERT-large-uncasedmodel fromHuggingFace [48] with parameters
suggested by [48] for training on SQuAD 1.1 and SQuAD 2.0. Our
code will be published for research purpose2.

Main Results. Table. 1 compares our models with baseline ap-
proaches. We can see that our CS2S-VR-ACS achieves the best
performance in terms of the evaluation metrics and outperforms
baselines by a great margin. Comparing CS2S-VR-A with Seq2Seq-
based answer-aware QG baselines, we can see that it outperforms
all the baseline approaches in that category with the same input
information (input passage and answer span). This is because that
our content separation strategy and vocabulary reduction opera-
tion help the model to better learn what words to copy from the
inputs. Comparing our ACS-aware QG models and variants with
auxiliary-information-enhanced models (such as NQG-Knowledge
and DLPH) and auxiliary-task-enhanced baselines (such as BERT-
QG-QAP), we can see that the clue and style information helps to
generate better results than models with knowledge or difficulty
information. That is because our ACS-aware setting makes the
question generation problem closer to one-to-one mapping, and
greatly reduces the task difficulty.

Comparing GPT2-ACSwith CS2S-VR-ACS, we can see that GPT2-
ACS achieves better METEOR score, while CS2S-VR-ACS performs
better over BLEU scores and ROUGE-L. That is because GPT2-
ACS has no vocabulary reduction. Hence, the generated words
are more flexible. However, metrics such as BLEU scores are not
able to evaluate the quality of generated QA pairs semantically.
Therefore, in the following section, we further analyze the quality
of QA pairs generated by CS2S-VR-ACS and GPT2-ACS to identify
their strengths and weaknesses.

4.2 Qualitative Analysis
After training our CS2S-VR-ACS and GPT2-ACS models, we gener-
ate large-scale <passage, question, answer> datasets from unlabeled
text corpus. Specifically, we obtain the top 10, 000 EnglishWikipedia
articles with Project Nayuki’s Wikipedia’s internal PageRanks. Af-
ter that, we split each article in the corpus into sentences, and
filter out sentences with lengths shorter than 5 or longer than 100.
Based on these sentences, we perform input sampling to sample
<answer, clue, style> triplets for each sentence according to the steps
described in Section 3.3, and feed them into our models to gener-
ate questions. After filtering, we create two datasets utilizing the
two models, where each of the dataset contains around 1.4 million
generated questions.

We first evaluate the quality of the generated QA pairs via volun-
tary human evaluation. We asked 10 graduate students to evaluate
500 <passage, question, answer> samples: 200 samples generated by
the CS2S-VR-ACS model, 200 samples generated by the GPT2-ACS
model, and 100 ground truth samples from the SQuAD 1.1 training
dataset. All the samples are randomly shuffled, and each sample

2https://github.com/bangliu/ACS-QG

2039

AskingQuestions the Human Way:
Scalable Question-Answer Generation from Text Corpus WWW ’20, April 20–24, 2020, Taipei, Taiwan

The New York Amsterdam News,
based in Harlem, is one of the leading
African American weekly newspapers
in the United States.

Q: What is the New York
Amsterdam News known for?
A: one of the leading African
American weekly newspapers in
the United States

Q: What is one of the leading
African American weekly
newspapers in the US?
A: The New York Amsterdam
News

Q: The New York Amsterdam
News is one of the leading
African American weekly
newspapers in which country?
A: the United States

Manhattan is a world center for training
and education in medicine and the life
sciences.

Q: What area of medicine is
Manhattan known for training?
A: the life sciences

Q: Which city is a world center
for education and training in
medicine?
A: Manhattan

Q: What is Manhattan known for
training and education in
medicine and life sciences?
A: a world center

Figure 5: Examples of the questions-answer pairs generated
by our system.

will be evaluated by 3 volunteers3. We collected responses of the
following questionnaire:
• Is the question well-formed? This is to check whether
a given question is both grammatical and meaningful [25].
Workers will select yes, no, or understandable. The option
understandable is selected if a question is not totally gram-
matically correct, but we can infer its meaning.
• If the question is well-formed or understandable, is
the question relevant to the passage?Workers will select
yes if we can find the answer to the generated question in
the passage.
• If the question is relevant to the passage, is the an-
swer actually a valid answer to the generated ques-
tion?Workers will select yes, no or partially. The last option
represents that the answer in our generated sample partially
overlaps with the true answer in the passage.

Table 2 shows the evaluation results based on the sampled data.
First, we can see that even the ground truth samples from the
SQuAD dataset are not totally well-formed, relevant or answered
correctly. That is because we only use the sentence which contains
the answer span as the context. However, about 20% questions in
SQuAD require paragraph-level context to be asked [11]. Second,
94% of the questions generated by GPT2-ACS are well-formed or
understandable, while the percentage is 71.5% for the CS2S-VR-ACS
model. We can see that although the BLEU scores of the GPT2-ACS
model are lower than that of CS2S-VR-ACS, the results of GPT2-ACS
are semantically better due to the knowledge learned from large-
scale pre-training. Third, we can see that most of the questions
generated by both CS2S-VR-ACS and GPT2-ACS are relevant to the
input passages. Finally, most of the answers are also correct given
the generated questions. This demonstrates the high quality of the
question-answer pairs generated by our models.

3The participation of the study was completely voluntary. The reviewers kindly of-
fered their help as volunteers without being compensated in any form. There was no
consequence for declining participating.

Experiments CS2S-VR-ACS GPT2-ACS
EM F1 EM F1

SQuAD 86.72 92.97 86.72 92.97
Generated 71.14 83.53 74.47 85.64

Generated + SQuAD 86.12 92.36 85.87 92.33

Table 3: Evaluating the question answering performance
with different training datasets.

Figure 5 is a running example to show the properties of gen-
erated questions. We can see that our ACS-aware question gen-
eration models are able to generate various questions based on
different answers, question styles, and clue chunks. Compared with
answer-aware question generation, our generation process is more
controllable, and our generated questions are more diverse and of
high quality. In some cases, the answer span does not match with
the question. We further performed pilot user studies to analyze
the bad cases in our generated samples. For each question that is
not well-formed, we ask workers to label the weakness of it. The
results of the study show that most of the errors are grammatically
errors, type mismatches, meaningless, or incomplete information.
For CS2S-VR-ACS, about 56.7% of the bad cases are grammatically
incorrect; 29.2% of them have the problem of type mismatch, e.g.,
the generated question starts with “When” when asking questions
about a person; 14.2% of them are grammatically correct, but mean-
ingless; and 17.5% of the questions do not express their meaning
explicitly due to missing words or fuzzy pronouns. Similarly, for
GPT2-ACS, the percentages of the above four problems are 40.4%
(grammatically incorrect), 46.2% (type mismatches), 15.4% (mean-
ingless) and 11.6% (incomplete or fuzzy information). Note that the
sum of these percentages does not equal to 1. That is because each
question may be labeled with multiple types of weaknesses.

In order to reduce different errors and further improve the quality
of generated questions, first, we need to incorporate the knowledge
of natural language by methods such as large-scale pre-training.
We can observe from Table 2 that most of the questions generated
by GPT2-ACS are well-formed and grammatically correct. Second,
we can utilize a better named entity recognition model to provide
more accurate information about the named entity types of answer
chunks. In this way, the type mismatch errors will be reduced. Last
but not the least, the problem of semantic mismatching, meaning-
less, or information incompleteness can be reduced by training a
better entailment model to enhance the data filter.

4.3 Applied to Question Answering
We also perform quality test of the generated question-answer
pairs by applying them to downstream machine reading compre-
hension tasks. Specifically, we train different BERT-based question
answering models based on the following settings:
• SQuAD: in this experiment, we utilize the original SQuAD
1.1 training dataset to train a BERT-based QA model, and
test the performance on the dev dataset. The performance is
evaluated by exact match (EM) and F1-Score (F1) between
predicted answer span and the true answer span [36].
• Generated: in this experiment, we sample a training dataset
from our generated questions, where the size is equal to the
training dataset of SQuAD 1.1. Although our questions are

2040

WWW ’20, April 20–24, 2020, Taipei, Taiwan Bang Liu1 , Haojie Wei2 , Di Niu1 , Haolan Chen2 , Yancheng He2

generated from sentences, we utilize the paragraphs the
sentences belong to as contexts when training QA models.
• Generated + SQuAD: in this experiment, we combine the
original SQuAD training dataset with our generated training
dataset to train the BERT-based QA model.

For all the QA experiments, the configurations are the same except
the training datasets.

Table 3 compares the performance of the resulting BERT-based
QA models trained by above settings. Our implementation gives
86.72% EM and 92.97% F1 when trained on the original SQuAD
dataset. In comparison, the model trained by our generated dataset
gives 74.47% and 85.64% F1. When we combine the generated
dataset with the SQuAD training set to train the QA model, the
performance is not further improved. The results are reasonable.
First, the generated dataset contains noises which will influence the
performance. Second, simply increasing the size of training dataset
will not always help with improving the performance. If most of the
generated training samples are already answerable by the model
trained over the original SQuAD dataset, they are not very helpful
to further enhance the generalization ability of the model.

There are at least two methods to leverage the generated dataset
to improve the performance of QA models. First, we can utilize
curriculum learning algorithms [2] to select samples during train-
ing. We can select samples according to the current state of the
model and the difficulties of the samples to further boost up the
model’s performance. Note that this requires us to remove the
BERT-based QA model from our data filter, or set the threshold
of filtering F1-score to be smaller. Second, similar to [12], we can
further incorporate the difficulty information into our question gen-
eration models, and encourage the model to generate more difficult
question-answer pairs. We leave these to our future works.

Aside from machine reading comprehension, our system can
be applied to many other applications. First, we can utilize it to
generate exercises for educational purposes. Second, we can utilize
our system to generate training datasets for a new domain by fine-
tuning it with a small amount of labeled data from that domain. This
will greatly reduce the human effort when we need to construct
a dataset for a new domain. Last but not the least, our pipeline
can be adapted to similar tasks such as comment generation, query
generation and so on.

5 RELATEDWORK
In this section, we review related works on question generation.

Rule-BasedQuestionGeneration. The rule-based approaches
rely onwell-designed rules or templatesmanually created by human
to transform a piece of given text to questions [4, 18, 19]. The major
steps include preprocessing the given text to choose targets to ask
about, and generate questions based on rules or templates [42].
However, they require creating rules and templates by experts
which is extremely expensive. Also, rules and templates have a lack
of diversity and are hard to generalize to different domains.

Answer-Aware Question Generation. Neural question gener-
ation models are trained end-to-end and do not rely on hand-crafted
rules or templates. The problem is usually formulated as answer-
aware question generation, where the position of answer is provided

as input. Most of them take advantage of the encoder-decoder frame-
work with attention mechanism [10, 11, 22, 27, 39, 41, 53]. Different
approaches incorporate the answer information into generation
model by different strategies, such as answer position indicator
[27, 53], separated answer encoding [23], embedding the relative
distance between the context words and the answer [42] and so
on. However, with context and answer information as input, the
problem of question generation is still a one-to-many mapping
problem, as we can ask different questions with the same input.

Auxiliary-Information-EnhancedQuestionGeneration. To
improve the quality of generated questions, researchers try to feed
the encoder with extra information. [12] aims to generate ques-
tions on different difficulty levels. It learns a difficulty estimator
to get training data, and feeds difficulty as input into the genera-
tion model. [25] learns to generate “general” or “specific” questions
about a document, and they utilize templates and train classifier
to get question type labels for existing datasets. [22] identifies the
content shared by a given question and answer pair as an aspect,
and learns an aspect-based question generation model. [16] incor-
porates knowledge base information to ask questions. Compared
with these works, our work doesn’t require extra labeling or train-
ing overhead to get the training dataset. Besides, our settings for
question generation dramatically reduce the difficulty of the task,
and achieve much better performance.

Multi-task Question Generation. Another strategy is enhanc-
ing question generation models with correlated tasks. Joint training
of question generation and answering models has improved the
performance of individual tasks [38, 44, 45, 47]. [27] jointly predicts
the words in input that is related to the aspect of the targeting
output question and will be copied to the question. [56] predicts
the question type based on the input answer and context. [55] in-
corporates language modeling task to help question generation.
[51] utilizes question paraphrasing and question answering tasks to
regularize the QG model to generate semantically valid questions.

6 CONCLUSION
In this paper, we propose ACS-aware question generation, a mecha-
nism to generate question-answer pairs from unlabelled text corpus
in a scalable way. By sampling meaningful tuples of clues, answers
and question styles from the input text and use the sampled tu-
ples to confine the way a question is asked, we have effectively
converted the originally one-to-many question generation problem
into a one-to-one mapping problem. We propose two neural net-
work models for question generation from input passage given the
selected clue, answer and question style, as well as discriminators
to control the data generation quality.

We present extensive performance evaluation of the proposed
system andmodels. Comparedwith existing answer-aware question
generation models and models with auxiliary inputs or tasks, our
ACS-aware QG model achieves significantly better performance,
which confirms the importance of clue and style information. We
further resorted to voluntary human evaluation to assess the quality
of generated data. Results show that our model is able to generate
diverse and high-quality questions even from the same input sen-
tence. Finally, we point out potential future directions to further
improve the performance of our pipeline.

2041

AskingQuestions the Human Way:
Scalable Question-Answer Generation from Text Corpus WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proceedings of the 26th annual international conference
on machine learning. ACM, 41–48.

[3] Ziqiang Cao, Chuwei Luo, Wenjie Li, and Sujian Li. 2017. Joint Copying and
Restricted Generation for Paraphrase.. In AAAI. 3152–3158.

[4] Yllias Chali and Sadid A Hasan. 2015. Towards topic-to-question generation.
Computational Linguistics 41, 1 (2015), 1–20.

[5] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[6] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. 2019.
What Does BERT Look At? An Analysis of BERT’s Attention. arXiv preprint
arXiv:1906.04341 (2019).

[7] Guy Danon and Mark Last. 2017. A Syntactic Approach to Domain-Specific
Automatic Question Generation. arXiv preprint arXiv:1712.09827 (2017).

[8] Michael Denkowski and Alon Lavie. 2014. Meteor universal: Language spe-
cific translation evaluation for any target language. In Proceedings of the ninth
workshop on statistical machine translation. 376–380.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Xinya Du and Claire Cardie. 2018. Harvesting paragraph-level question-answer
pairs from wikipedia. arXiv preprint arXiv:1805.05942 (2018).

[11] Xinya Du, Junru Shao, and Claire Cardie. 2017. Learning to ask: Neural question
generation for reading comprehension. arXiv preprint arXiv:1705.00106 (2017).

[12] Yifan Gao, Jianan Wang, Lidong Bing, Irwin King, and Michael R Lyu. 2018.
Difficulty Controllable Question Generation for Reading Comprehension. arXiv
preprint arXiv:1807.03586 (2018).

[13] Ian J Goodfellow, DavidWarde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua
Bengio. 2013. Maxout networks. arXiv preprint arXiv:1302.4389 (2013).

[14] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating copying
mechanism in sequence-to-sequence learning. arXiv preprint arXiv:1603.06393
(2016).

[15] Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua
Bengio. 2016. Pointing the unknown words. arXiv preprint arXiv:1603.08148
(2016).

[16] DeepakGupta, Kaheer Suleman,MahmoudAdada, AndrewMcNamara, and Justin
Harris. 2019. Improving Neural Question Generation using World Knowledge.
arXiv preprint arXiv:1909.03716 (2019).

[17] Fred.X Han, Di Niu, Kunfeng Lai, Weidong Guo, Yancheng He, and Yu Xu. 2019.
Inferring Search Queries fromWeb Documents via a Graph-Augmented Sequence
to Attention Network. 2792–2798. https://doi.org/10.1145/3308558.3313746

[18] Michael Heilman. 2011. Automatic factual question generation from text. Lan-
guage Technologies Institute School of Computer Science Carnegie Mellon University
195 (2011).

[19] Michael Heilman and Noah A Smith. 2010. Good question! statistical ranking
for question generation. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, 609–617.

[20] Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. 2019. The curious case
of neural text degeneration. arXiv preprint arXiv:1904.09751 (2019).

[21] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and incremen-
tal parsing. (2017). To appear.

[22] Wenpeng Hu, Bing Liu, Jinwen Ma, Dongyan Zhao, and Rui Yan. 2018. Aspect-
based Question Generation. (2018).

[23] Yanghoon Kim, Hwanhee Lee, Joongbo Shin, and Kyomin Jung. 2019. Improving
neural question generation using answer separation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33. 6602–6609.

[24] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[25] Kalpesh Krishna andMohit Iyyer. 2019. Generating Question-Answer Hierarchies.
arXiv preprint arXiv:1906.02622 (2019).

[26] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
Text Summarization Branches Out (2004).

[27] Bang Liu, Mingjun Zhao, Di Niu, Kunfeng Lai, Yancheng He, Haojie Wei, and Yu
Xu. 2019. Learning to Generate Questions by Learning What not to Generate. In
The World Wide Web Conference. ACM, 1106–1118.

[28] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[29] MatthewHonnibal. 2015. spaCy: Industrial-strengthNatural Language Processing
(NLP) with Python and Cython. https://spacy.io. [Online; accessed 3-November-
2018].

[30] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[31] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

[32] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. 2017. Pytorch:
Tensors and dynamic neural networks in python with strong gpu acceleration.

[33] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
Blog 1, 8 (2019).

[35] Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. KnowWhat You Don’t Know:
Unanswerable Questions for SQuAD. arXiv preprint arXiv:1806.03822 (2018).

[36] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[37] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45–50. http://is.muni.cz/publication/
884893/en.

[38] Mrinmaya Sachan and Eric Xing. 2018. Self-training for jointly learning to ask
and answer questions. In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). 629–640.

[39] Iulian Vlad Serban, Alberto García-Durán, Caglar Gulcehre, Sungjin Ahn, Sarath
Chandar, Aaron Courville, and Yoshua Bengio. 2016. Generating factoid questions
with recurrent neural networks: The 30m factoid question-answer corpus. arXiv
preprint arXiv:1603.06807 (2016).

[40] Heung-Yeung Shum, Xiao-dong He, and Di Li. 2018. From Eliza to XiaoIce: chal-
lenges and opportunities with social chatbots. Frontiers of Information Technology
& Electronic Engineering 19, 1 (2018), 10–26.

[41] Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang, and Daniel Gildea. 2018.
Leveraging Context Information for Natural Question Generation. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 2 (Short Papers),
Vol. 2. 569–574.

[42] Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma, and Shi Wang. 2018.
Answer-focused and Position-aware Neural Question Generation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
3930–3939.

[43] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[44] Duyu Tang, Nan Duan, Tao Qin, Zhao Yan, and Ming Zhou. 2017. Question
answering and question generation as dual tasks. arXiv preprint arXiv:1706.02027
(2017).

[45] Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo Sun, Shujie Liu, Yuanhua
Lv, and Ming Zhou. 2018. Learning to Collaborate for Question Answering and
Asking. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), Vol. 1. 1564–1574.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[47] Tong Wang, Xingdi Yuan, and Adam Trischler. 2017. A joint model for question
answering and question generation. arXiv preprint arXiv:1706.01450 (2017).

[48] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and
Jamie Brew. 2019. Transformers: State-of-the-art Natural Language Processing.
arXiv:cs.CL/1910.03771

[49] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V Le. 2019. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. arXiv preprint arXiv:1906.08237 (2019).

[50] Kaichun Yao, Libo Zhang, Tiejian Luo, Lili Tao, and Yanjun Wu. 2018. Teaching
Machines to Ask Questions.. In IJCAI. 4546–4552.

[51] Shiyue Zhang and Mohit Bansal. 2019. Addressing Semantic Drift in Ques-
tion Generation for Semi-Supervised Question Answering. arXiv preprint
arXiv:1909.06356 (2019).

[52] Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa Ke. 2018. Paragraph-level
Neural Question Generation with Maxout Pointer and Gated Self-attention Net-
works. In Proceedings of the 2018 Conference on Empirical Methods in Natural

2042

https://doi.org/10.1145/3308558.3313746
https://spacy.io
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://arxiv.org/abs/cs.CL/1910.03771

WWW ’20, April 20–24, 2020, Taipei, Taiwan Bang Liu1 , Haojie Wei2 , Di Niu1 , Haolan Chen2 , Yancheng He2

Language Processing. 3901–3910.
[53] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou.

2017. Neural question generation from text: A preliminary study. In National
CCF Conference on Natural Language Processing and Chinese Computing. Springer,
662–671.

[54] Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou. 2018. Sequential Copying
Networks. arXiv preprint arXiv:1807.02301 (2018).

[55] Wenjie Zhou, Minghua Zhang, and Yunfang Wu. 2019. Multi-Task Learning with
Language Modeling for Question Generation. arXiv preprint arXiv:1908.11813
(2019).

[56] Wenjie Zhou, Minghua Zhang, and Yunfang Wu. 2019. Question-type Driven
Question Generation. arXiv preprint arXiv:1909.00140 (2019).

2043

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Model Description
	3.1 Obtaining Training Data for Question Generation
	3.2 ACS-Aware Question Generation
	3.3 Sampling Inputs for Question Generation
	3.4 Data Filtering for Quality Control

	4 Evaluation
	4.1 Evaluating ACS-aware Question Generation
	4.2 Qualitative Analysis
	4.3 Applied to Question Answering

	5 Related Work
	6 Conclusion
	References

